See-through OLED display goes eye-interactive

April 18, 2014 //By Uwe Vogel
See-through OLED display goes eye-interactive
Uwe Vogel of the Center for Organic Materials & Electronic Devices Dresden (COMEDD) outlines how a see-through OLED display is going eye-interactive.

Micro-displays based on organic light-emitting diodes (OLEDs) achieve high optical performance with excellent contrast ratio and large dynamic range at low power consumption. Their direct light emission enables small-footprint and lightweight devices without additional backlight, making them suitable for mobile near-to-eye (NTE) applications such as electronic viewfinders or head-mounted displays (HMD).

Fig. 1: Cross-section of OLED-on-CMOS setup in bi-directional OLED microdisplay and functional demo

In state-of-the-art applications the micro-display typically acts as a purely unidirectional output device. With the integration of an additional image sensor, the functionality of the micro-display can be extended to a bidirectional optical input/output device. The major aim is the implementation of eye-tracking capabilities in see-through HMD applications to achieve gaze-based human-display-interaction.

While today’s mobile information systems such as smartphones and tablets are usually touch-controlled, micro-displays with state-of-the art pixel count but significantly decreased geometrical size, have found their way into consumer electronic products in the shape of electronic view finders in digital cameras. Micro-displays based on Organic Light Emitting Diodes (OLED) could have a very promising future for video and data display, especially if they can double up as an input channel. Now, OLED technology offers the possibility to integrate highly efficient light sources with photo detectors on a CMOS backplane. This enables fully integrated opto-electronic and smart applications based on silicon chips. One can realize micro-scale optical emitters and receivers on the same chip, e.g., in an array-type organization as “bidirectional OLED micro-display”, thus performing a device that presents and captures images in the same place and even at the same time.

This can be the foundation for a complete new class of devices for personalized information management: presenting information to the user while optically recognizing the user’s interaction. Implemented as augmented reality glasses that carry bidirectional micro-displays, such devices could feed visual information deliberately or unconsciously adapted to the context of operation, controlled through eye movement alone.

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.