AI algorithm enables sleep monitoring with radio waves

AI algorithm enables sleep monitoring with radio waves

Technology News |
To make it easier to diagnose and study sleep problems, researchers at MIT and Massachusetts General Hospital have devised a new way to monitor sleep stages without sensors attached to the body. Their device uses an advanced artificial intelligence algorithm to analyze the radio signals around the person and translate those measurements into sleep stages: light, deep, or rapid eye movement (REM).
By Wisse Hettinga

Share:

“Imagine if your Wi-Fi router knows when you are dreaming, and can monitor whether you are having enough deep sleep, which is necessary for memory consolidation,” says Dina Katabi, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science, who led the study. “Our vision is developing health sensors that will disappear into the background and capture physiological signals and important health metrics, without asking the user to change her behavior in any way.”

Katabi worked on the study with Matt Bianchi, chief of the division of sleep medicine at MGH, and Tommi Jaakkola, the Thomas Siebel Professor of Electrical Engineering and Computer Science and a member of the Institute for Data, Systems, and Society at MIT. Mingmin Zhao, an MIT graduate student, is the paper’s first author, and Shichao Yue, another MIT graduate student, is also a co-author.

Katabi and members of her group in MIT’s Computer Science and Artificial Intelligence Laboratory have previously developed radio-based sensors that enable them to remotely measure vital signs and behaviors that can be indicators of health. These sensors consist of a wireless device, about the size of a laptop computer, that emits low-power RF signals. As the radio waves reflect off of the body, any slight movement of the body alters the frequency of the reflected waves. Analyzing those waves can reveal vital signs such as pulse and breathing rate.

“It’s a smart Wi-Fi-like box that sits in the home and analyzes these reflections and discovers all of these changes in the body, through a signature that the body leaves on the RF signal,” Katabi says.

Katabi and her students have also used this approach to create a sensor called WiGait that can measure walking speed using wireless signals, which could help doctors predict cognitive decline, falls, certain cardiac or pulmonary diseases, or other health problems.

After developing those sensors, Katabi thought that a similar approach could also be useful for monitoring sleep, which is currently done while patients spend the night in a sleep lab hooked up to monitors such as electroencephalography (EEG) machines.


“The opportunity is very big because we don’t understand sleep well, and a high fraction of the population has sleep problems,” says Zhao. “We have this technology that, if we can make it work, can move us from a world where we do sleep studies once every few months in the sleep lab to continuous sleep studies in the home.”

To achieve that, the researchers had to come up with a way to translate their measurements of pulse, breathing rate, and movement into sleep stages. Recent advances in artificial intelligence have made it possible to train computer algorithms known as deep neural networks to extract and analyze information from complex datasets, such as the radio signals obtained from the researchers’ sensor. However, these signals have a great deal of information that is irrelevant to sleep and can be confusing to existing algorithms. The MIT researchers had to come up with a new AI algorithm based on deep neural networks, which eliminates the irrelevant information.

“The surrounding conditions introduce a lot of unwanted variation in what you measure. The novelty lies in preserving the sleep signal while removing the rest,” says Jaakkola. Their algorithm can be used in different locations and with different people, without any calibration.

Using this approach in tests of 25 healthy volunteers, the researchers found that their technique was about 80 percent accurate, which is comparable to the accuracy of ratings determined by sleep specialists based on EEG measurements.

“Our device allows you not only to remove all of these sensors that you put on the person, and make it a much better experience that can be done at home, it also makes the job of the doctor and the sleep technologist much easier,” Katabi says. “They don’t have to go through the data and manually label it.”

 

Related news

Detecting walking speed with wireless signals: https://news.mit.edu/2017/dina-katabi-csail-team-develop-wireless-system-to-detect-walking-speeds-0501.

Detecting emotions with wireless signals: https://news.mit.edu/2016/detecting-emotions-with-wireless-signals-0920.

Linked Articles
eeNews Analog
10s