Flexible pressure sensor aids breast cancer detection

January 26, 2016 //By Paul Buckley
Flexible pressure sensor aids breast cancer detection
Researchers from the University of Tokyo's Graduate School of Engineering have developed a nanofiber-type pressure sensor that can measure pressure distribution of rounded surfaces such as an inflated balloon and maintain its sensing accuracy across a radius of 80 micrometers.

The innovative transparent, bendable and sensitive sensor technology could pave the way for healthcare practitioners to be able to physically screen for breast cancer using pressure-sensitive rubber gloves to detect tumors.

Conventional pressure sensors are flexible enough to fit to soft surfaces such as human skin, but they cannot measure pressure changes accurately once they are twisted or wrinkled, making them unsuitable for use on complex and moving surfaces. Additionally, it is difficult to reduce them below 100 micrometers thickness because of limitations in current production methods.

The sensor developed by an international team of researchers led by Dr. Sungwon Lee and Professor Takao Someya is roughly 8 micrometers thick and can measure the pressure in 144 locations at once.

The device demonstrated in the study consists of organic transistors, electronic switches made from carbon and oxygen based organic materials, and a pressure sensitive nanofiber structure. Carbon nanotubes and graphene were added to an elastic polymer to create nanofibers with a diameter of 300 to 700 nanometers, which were then entangled with each other to form a transparent, thin and light porous structure.

"We've also tested the performance of our pressure sensor with an artificial blood vessel and found that it could detect small pressure changes and speed of pressure propagation," said Lee. "Flexible electronics have great potential for implantable and wearable devices. I realized that many groups are developing flexible sensors that can measure pressure but none of them are suitable for measuring real objects since they are sensitive to distortion. That was my main motivation and I think we have proposed an effective solution to this problem."


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.