Researchers design nanoscale light-based feedback loop

June 11, 2019 //By Julien Happich
feedback loop
Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have designed a novel type of feedback loop in which light and matter become one.

Publishing their results in Nature Nanotechnology under the paper title “Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators”, the researchers fabricated nanodisks from exfoliated multilayer tungsten disulphide (WS2) and demonstrated distinct Mie resonances and anapole states, which they could tune in wavelength over the visible and near-infrared range by varying the nanodisk size and aspect ratio. They also describe a novel regime of light–matter interaction, anapole-exciton polaritons occurring within a single WS2 nanodisk, which they say could be harnessed to design tiny optical resonators for light-based feedback loops.

“We have created a hybrid consisting of equal parts of light and matter. The concept opens completely new doors in both fundamental research and applied nanophotonics and there is a great deal of scientific interest in this,” explained Ruggero Verre, a researcher in the Department of Physics at Chalmers and one of the authors of the scientific article.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.