Using the human body to wirelessly power wearable devices

June 15, 2021 // By Nick Flaherty
Using the human body to wirelessly power wearable devices
Researchers in Singapore have developed a technique to charge wearables from an RF source via the human body.

The approach enables a single device, such as a mobile phone placed in the pocket, to wirelessly power other wearable devices on a user's body, using the human body as a medium for power transmission. The system can also tap into ambient RF energy.

The team led by Associate Professor Jerald Yoo from the Department of Electrical and Computer Engineering and the N.1 Institute for Health at the National University of Singapore (NUS) designed a receiver and transmitter system that uses the human body for the power transmission and energy harvesting. Each receiver and transmitter contains a chip that is used as a springboard to extend coverage over the entire body.

A user just needs to place the transmitter on a single power source, such as a smartphone, while multiple receivers can be placed anywhere on the person's body. The system then harnesses energy from the source to power multiple wearables on the user's body via the body-coupled power transmission. In this way, the user will only need to charge one device, and the rest of the gadgets that are worn can simultaneously be powered up from that single source.

The team's experiments showed that their system allows a single power source that is fully charged to power up to 10 wearable devices on the body, for a duration of over 10 hours.

The body-coupled power transmission exhibits a path loss 30- to 70-dB lower than far-field radio frequency transmission in the presence of body shadowing. The system can recover 2 µW at the head from an ~1.2-mW transmitter placed 160 cm away at the ankle.

As a complementary source of power, the NUS team also looked into harvesting energy from the environment. Their research found that typical office and home environments have parasitic RF waves. The receiver scavenges the EM waves from the ambient environment, and through a process referred to as body-coupled powering, the human body is able to harvest

Ms Li Jiamin (centre), who has a transmitter on her right wrist and a receiver connected to a smart watch on her left wrist, and Mr Dong Yilong (right) who is holding a panel displaying the technology

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.